Urban Atmospheric Observations & Fluxes of: Methane in Boston, Massachusetts by Kathryn McKain & **Carbon-dioxide in the Northeast, U.S.** by Maryann Sargent Wofsy Group, Harvard University **CMS Atmospheric Validation Working Group** April 1, 2015 With contributions from colleagues at: Harvard, Boston University, AER, Aerodyne, and Earth Networks

Why focus on urban areas?

Cities represent large, concentrated source areas that encapsulate multiple important anthropogenic source processes and trends

-> Tracking and verification of reported regional or national trends

-> Test bed for linking atmospheric observations from different platforms, covering different scales

-> Opportunity to link observations to underlying flux processes and drivers

-> Opportunity to translate results to actionable emission mitigation strategies

Boston GHG Network Research Activities

- Atmospheric Observations
 - In-situ CO₂ & CH₄
 - 5 stations in Boston network
 - Earth Networks and NOAA stations form regional network
 - Ground-based Remote Sensing
 - ^o Upward-looking FTS (J. Chen, T. Jones, K. Chance)
 - Lidar measurements of aerosol backscatter

(P. DeCola, Y. Barrera, J. Hegarty)

- High-resolution models of anthropogenic and biosphere CO₂ fluxes (L. Hutyra, et al.)
- High-resolution WRF meteorology (T. Nehrkorn, et al.)

Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts

Kathryn McKain^{a,1}, Adrian Down^{b,c}, Steve M. Raciti^{d,e}, John Budney^a, Lucy R. Hutyra^d, Cody Floerchinger^f, Scott C. Herndon^f, Thomas Nehrkorn^g, Mark Zahniser^f, Robert B. Jackson^{b,c,h,i,j}, Nathan Phillips^d, and Steven C. Wofsy^a

Affiliations: ^aHarvard, ^{b,c}Duke, ^dBoston Univ, ^fAerodyne, ^gAER, ^{h,i,j}Stanford

PNAS | February 17, 2015 | vol. 112 | no. 7 | 1941–1946 www.pnas.org/cgi/doi/10.1073/pnas.1416261112

Motivation:

- Uncertainty in source distributions in space, time and sector
- $_{\circ}$ Major recent focus on CH₄ emissions in U. S. from natural gas
 - Especially from *production*
- Scant knowledge of CH₄ emissions from *consuming regions*

Study Objectives – Determine:

- $_{\circ}$ CH₄ emissions from the whole urban area for 1 year
- Fractional contribution of natural gas
- Ratio of natural gas lost to the atmosphere versus natural gas imported to the region ("loss rate")
- Investigate seasonal variations

Domain:

90 km radius circle centered on Boston (18,000 km² land area)

Time Period:

September, 2012 – August, 2013 (1 year)

* Captures emissions from all NG activities in region: transmission, distribution, end-use, LNG importation & storage, CNG vehicles

Methodological Framework

- 1. Atmospheric CH₄ Measurements
 - Continuously from inside and outside of the city
 - \rightarrow Urban CH₄ enhancement (Δ CH₄) \propto urban CH₄ emissions
- 2. Atmospheric and Pipeline Ethane (C₂H₆) Measurements (Aerodyne)
 - C₂H₆ is a component of NG but is not co-emitted with CH₄ from biological sources
 - Compare ratio $(C_2H_6:CH_4)$ in the atmosphere and pipeline
 - \rightarrow Fraction of CH₄ emissions in the city due to NG
- 3. Atmospheric Transport Model (AER)
 - WRF-STILT Lagrangian Particle Dispersion Model
 - Simulates sensitivity of obs to upwind surface fluxes (footprint, units: Δ ppb / (µmole m⁻² s⁻¹))
 - \rightarrow Emissions optimized to match observations

4. Natural Gas Consumption Map

- Spatial disaggregation of EIA monthly-state-sector totals
- → Fraction of NG imported to the region lost to the atmosphere ("loss rate")

Harvard Forest 30 m (8 levels) Aug 2012 - Present

Nahant 15 m July 2012 – Feb 2014

Boston Univ 30 m Aug 2012 - present

19. AN 19. AN 19.

Copley 215 m (4 corners) July 2012 <u>pr</u>esent Thompson Island 25 m Oct 2013 – Nov 2014

Tall Building Sampling Strategy

Challenges

- Building emissions
- Perturbed Air Flow

Approach

- Sample below roof from 4 corners in sequence
- Select windward corner according to observed concentrations

9

8

100%

É

Methane Observations

Background:

- -Two upwind stations
- -Station selection based on wind direction
- Distributions generated from 48-hr moving averages of lower percentiles

Methane Enhancement (ΔCH_4) =

- Urban Background concentrations
- Daily afternoon (11-16 h EST, 16-21 h UTC) averages

Persistent Urban Methane Enhancement

	Total CH ₄ (ppb)	ΔCH ₄ (ppb)	
BU	1951 (1937, 1971)	46 (37 <i>,</i> 58)	
СОР	1936 (1924, 1952)	31 (24, 39)	

Ethane / Methane in Pipeline Gas

Ethane / Methane in the Atmosphere vs. Pipeline

	C ₂ H ₆ / CH ₄ (95% CI)		Natural Gas	
	Atmosphere	Pipeline	contribution to ΔCH_4	
Cool	2.6 %	2.7 %	98 %	
(Oct 2012-Jan 2013)	(2.5 <i>,</i> 2.8)	(2.7, 2.7)	(92, 105)	
Warm	1.6 %	2.4 %	67 %	
(May-June 2014)	(1.4 <i>,</i> 1.7)	(2.3, 2.5)	(59, 72)	

Natural Gas Consumption

Reconstructed Geographical Distribution

Base data: EIA monthly-state-sectoral consumption

Includes all sectors – Electric power, Residential, Commercial, Industrial, Vehicle fuel, Pipeline & distribution use

Spatially disaggregated by:

Building square footage by fuel-type (Residential, Commercial) Power plant location (Electric, Industrial, Commercial)

Emissions scaled so afternoon seasonal mean $\Delta CH_{4,mod} = \Delta CH_{4,obs}$

Results Summary

16

Comparison with Other Bottom-up Estimates

- EPA GHG Inventory (Dist., Trans. & Storage): 0.7%
- MA State GHG Inventory (Dist., Trans. & Storage): <u>1.1%</u>
 * most valid comparison
- GHG Reporting Programs (EPA & MA): 0.6 (0.4-1.6) %
- EIA-176 "Losses from leaks, damage, accidents, migrations & blow-downs": 0.4 (0.1-1.1) %
- PHMSA LAUF: 2.7 (0-4.6) %

* includes leaks, metering inaccuracies and theft

Significance of Results

- Volume of Lost Gas: 15 billion scf y⁻¹, 6 scf person⁻¹ y⁻¹
- Value of Lost Gas: \$90 million
- Mass of Emitted CH₄: 0.3 Tg y⁻¹
 ~ 8% U.S. emissions from trans, dist, storage
 ~23% of U.S. emissions distribution

Urban Atmospheric Observations & Fluxes of Carbon Dioxide in the Northeast U.S.

Maryann Sargent

CO₂ Inverse Model Goals

- What information can we add to bottom up inventories with high resolution atmospheric CO₂ measurements?
 - Impact of urban ecology, land use change on CO₂
 - How does traffic congestion impact emissions?
 - CO₂ as a proxy for NO, NO₂, which are often emitted together better understand sources and transport
 - Refine method before applying it to other cities with larger uncertainty in bottom up inventories

Methodological Framework

- 1. Atmospheric CO₂ Measurements (Harvard, ENI, NOAA)
 - Continuously measured at 4 Harvard sites, 4+ ENI sites, 2+ NOAA sites
- 2. Bottom-up CO₂ Emission Inventories (BU Lucy Hutyra, Conor Gately)
 - -1 km square grid covering northeast corridor
 - Completed sectors: onroad and offroad transportation, residential, airports, electric power generation, human respiration, industrial and commercial, oil/gas production
 - In process: biosphere fluxes
- 3. Atmospheric Transport Model (AER Thomas Nehrkorn, Marikate Mountain)
 - WRF-STILT Lagrangian Particle Dispersion Model
 - Simulates sensitivity of obs to upwind surface fluxes: footprints

Urban CO₂ enhancement (Δ CO₂) \propto urban CO₂ emissions CO₂[*urban*] - CO₂[*background*] = emissions [μ mole m⁻² s⁻¹] * footprint [*ppm/*(μ mole m⁻² s⁻¹)]

Northeast Measurement Network

Copley 215 m (4 corners) July 2012 - present

Harvard & Earth Networks Cross-Calibration

- Consistency of calibration across modeled sites critical
- All priority sites calibrated with Harvard's traveling standard tanks:
 a) 379 ppm CO₂, 1.71 ppm CH₄
 b) 414 ppm CO₂, 2.30 ppm CH₄
- Earth Networks use 1-point calibration: ~395 ppm CO₂, ~1.87 ppm CH₄
- Two-point calibration necessary for desired accuracy of 0.1 ppm CO₂,
 2 ppb CH₄

Bottom-up Emission Inventories (BU)

 Completed sectors: onroad and offroad transportation, residential, airports, electric power generation, human respiration, industrial and commercial, oil/gas production

– 1 km, 1 hr gridded emissions for January, 2013 – December, 2014

WRF-STILT Atmospheric Transport Model (AER)

- Will incorporate increasing grid size with distance from receptor to smooth sparse footprint
- Compared impact of releasing 500 particles once per hour vs. releasing them throughout the hour
- No significant difference in ability to reproduce CH₄ obs, even during periods of shifting wind. Will continue to release particles once per hour.

CO₂ Background Concentration

- Background CO₂ is function of altitude and angle of departure from region
- Starting from tower observations, adjust with altitude according to carbon tracker

Summary and Future Work

- Inverse model for Boston area alone:
 - Receptor sites: BU, Copley
 - Background sites: Harvard forest, Canaan NH (ENI), Martha's Vineyard (NOAA)
 - Anthropogenic bottom-up emissions completed, biosphere emissions ongoing
 - WRF runs completed for July-Dec 2013, STILT completed for July 2013; further runs ongoing
- Next step: integrated inverse model with multiple receptors for northeast corridor

Contact:

Kathryn McKain: kmckain@fas.harvard.edu Maryann Sargent: mracine@fas.harvard.edu

NO DE DE LO

Methane Backup

Unfiltered Ethane /Methane Dataset

Prior Emission Fields

1 km² spatial resolution; static in time; major sectors only

Patterns of Natural Gas Consumption

Literature Review

Ref.	Location	Measurement	Emission Rate
		year	$(g CH_4 m^{-2} yr^{-1})$
43	Nagoya, Japan	1990-91	7
44	Midwest town, USA	1991	55
45	Two towns in East Germany	1992	12, 60
46	North Britain	1994	28 - 56
47	Heidelberg, Germany	1995-97	8 ± 2
48	Krakow, Poland	1996-97	20
49	St. Petersburg, Russia	1996-2000	32 ±9
50	Beijing, China	2000	50
51	Los Angeles County, CA, USA	2007-08	$205 \pm 6^*$
52	South Coast Air Basin, CA, USA	2007-08	$228 \pm 38^*$
53	Indianapolis, IN, USA	2008	71 ± 50
54	South Coast Air Basin, CA, USA	2010	$167 \pm 57^*$
55	South Coast Air Basin, CA, USA	2010	$156 \pm 14^*$
56	South Coast Air Basin, CA, USA	2010	$127 \pm 21^*$
57†	South Coast Air Basin, CA, USA	2010	$160 \pm 30^*$
57 [‡]	South Coast Air Basin, CA, USA	2010	$118 \pm 30^{*}$
58	Florence, Italy	2011	58
59	London, UK	2012	66 ± 10

Evaluation of WRF

Evaluation of WRF

Error Analysis

- Emissions: End-to-end bootstrap of distributions of background, observed and modeled CH₄ at hourly, daily and seasonal time scales, and optimization factors (± 20%)
- Attribution: Bootstrapped errors of atmosphere and pipeline data (± 10%)
- Denominator: errors reported by EIA (± 7%)
- Loss Rate from all above (± 25%)
- Does not include errors for spatial distribution of emissions and consumption

Sensitivity Tests

- 1. Outliers included (-6%)
- 2. Alternative data aggregation (+15%)
- 3. EDGAR prior emissions (-10%)
- 4. Coarser prior emissions (+12%)
- 5. Prior NG emissions scaled to match attribution (-15%)
- 6. BU Only (-5%)
- 7. COP Only (+30%)
- 8. Transport: NAM/HYSPLIT (-25%)

