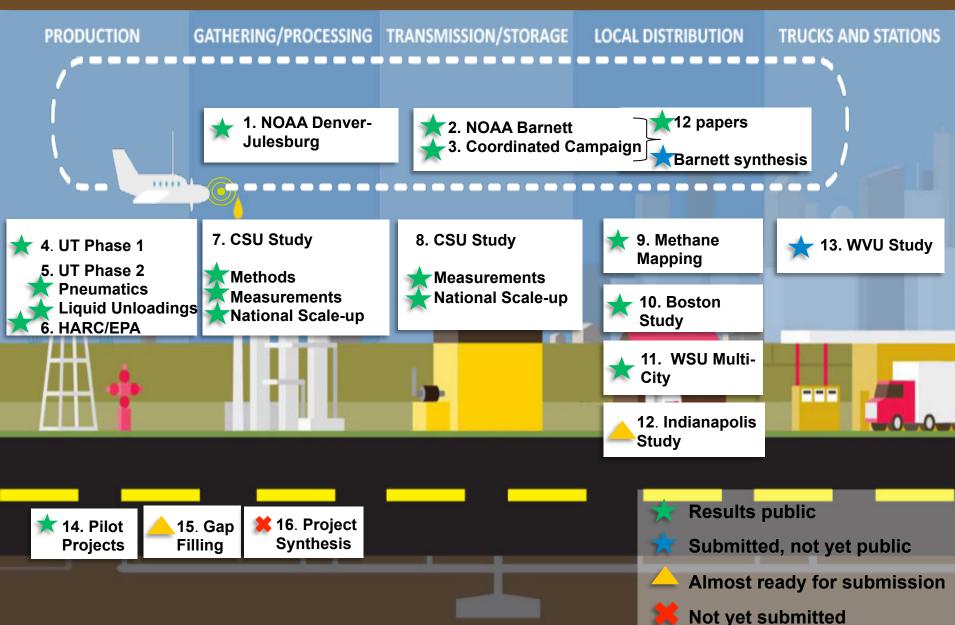
New and Future Developments in Methane Policy and Technology

Presented to:

CMS Applications Policy Speaker Series 9/22/2015

Ben N Ratner



Methane Science

What have we done and learned?

EDF STUDIES BY SUPPLY CHAIN SEGMENT

(roughly 30 total papers)

24 published studies so far

2.May 2014: NOAA DJ Basin Flyover: http://onlinelibrary.wiley.com/doi/10.1002/2013JD021272/pdf

3.November 2014: HARC/EPA Fence-line study: http://pubs.acs.org/doi/abs/10.1021/es503070q

4.December 2014 UT Pneumatics Study: http://pubs.acs.org/doi/abs/10.1021/es5040156

5.December 2014 UT Liquid Unloadings Study: http://pubs.acs.org/doi/abs/10.1021/es504016r

6.January 2015: Harvard Boston Urban Methane Study:

http://www.pnas.org/content/early/2015/01/21/1416261112

7.February 2015: CSU Transmission and Storage study: Measurement paper:

http://pubs.acs.org/doi/abs/10.1021/es5060258

8.February 2015: CSU Gathering and Processing study: Measurement paper:

http://pubs.acs.org/doi/abs/10.1021/es5052809

9.March 2015: WSU Local Distribution study: http://pubs.acs.org/doi/abs/10.1021/es505116p

10.May 2015: CSU Gathering and Processing study, Methods paper: http://www.atmos-meas-tech.net/8/2017/2015/amt-8-2017-2015.html

11.July 2015: CSU Transmission and Storage study National results paper:

http://pubs.acs.org/doi/abs/10.1021/acs.est.5b01669

12.August 2015: CSU Gathering and Processing study CSU Gathering and Processing study

National results paper: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b02275

Barnett Coordinated Campaign Papers (July 2015)

13.Overview: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b02305

14. NOAA led Top-down study: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00217

15.Bottom-up inventory - EDF: http://pubs.acs.org/doi/abs/10.1021/es506359c

16.Functional super-emitter study - EDF: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00133

17.Michigan airborne study: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00219

18.WVU compressor study: http://pubs.acs.org/doi/abs/10.1021/es506163m

19.Princeton near-field study: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00705

20.Purdue aircraft study: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00410

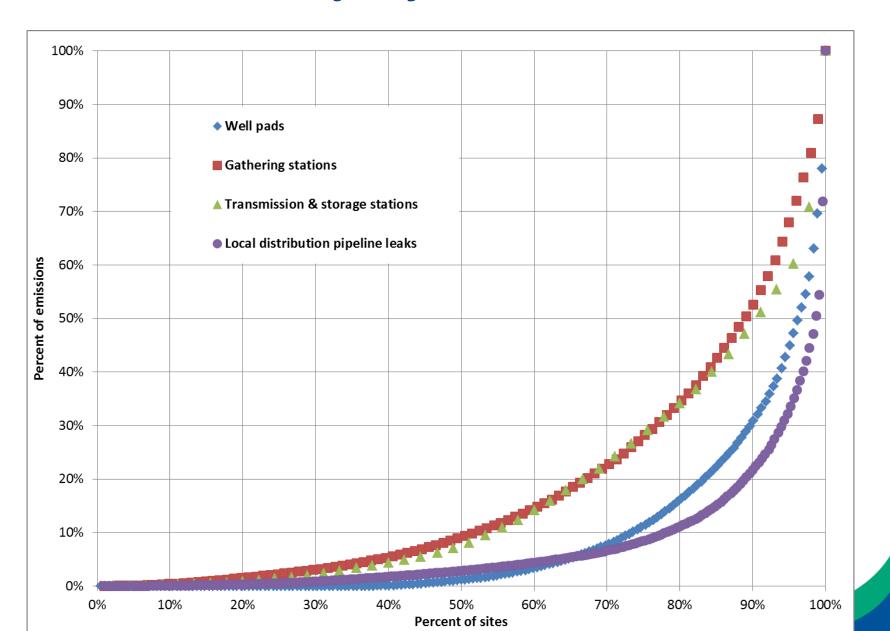
21.Aerodyne mobile study: http://pubs.acs.org/doi/abs/10.1021/es506352j

22.U of Houston mobile study: http://pubs.acs.org/doi/abs/10.1021/es5063055

23.Picarro mobile flux study: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00099

24. Cincinnati tracer apportionment: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00057

Barnett Shale October 16 - 30, 2013


PRODUCTION GATHERING/PROCESSING TRANSMISSION/STORAGE **LOCAL DISTRIBUTION TRUCKS AND STATIONS** NOAA/CU/Michigan **Sander Geophysics** Scientific Aviation/Penn State Princeton/ **Purdue University** University of Texas - Dallas Picarro/ **Washington State** West Virginia **Duke University** University University UC Irvine/University of Cincinnati

(Air Samples)

Aerodyne

University of Houston

A small fraction of sites and components contributes the majority of emissions

Methane Detection Technologies & Strategies Where are we headed?

Today's approach to leak detection

Cut cost, shift paradigm

Methane Leakage Detector

Methane Detectors Challenge – Innovation²

Demand

Buy and Use

Market Maker

Convene and Catalyze

Supply

Innovate

- Colorado start-up
- Colorado academic
- Chinese coal mine safety co.
- Swedish sensor co.

Advise

...and more...

Desired specifications for detection tech

Specification	First Round Lab Test	Second Round Lab/Field Test	Industry Pilot Purchase/Deploymen	
Detection limits	5 ppm*	5 ppm*	2 ppm*	
Detection range	5 ppm - 250 ppm*	5 ppm - 250 ppm*	2 ppm - 2000 ppm*	
Leak detection capability	Not specified	5 scfm	2.5 scfm	
Calibration frequency	1-2 times or less per test phase	1-2 times or less per test phase	Once per year or less	
Remote calibration	Optional	Optional	Preferred	
Ability to measure methane	Required	Required	Required	
Ability to measure other hydrocarbons	Optional	Optional	Optional	
Methane specific detection	Optional	Optional	Preferred	
Ability to isolate on-site methane gas from off-site sources	Optional	Required	Required	
Power requirements	110v, 20 amp or single size solar panele and rechargeable battery	Single, standard size solar panel and rechargeable battery	Single, standard size sola panel and rechargeable battery	
Power consumption	As low as possible	As low as possible	As low as possible	
Cost of hardware	Not specified	Not specified C	\$5000/\$1000 per unit**	

Preliminary results

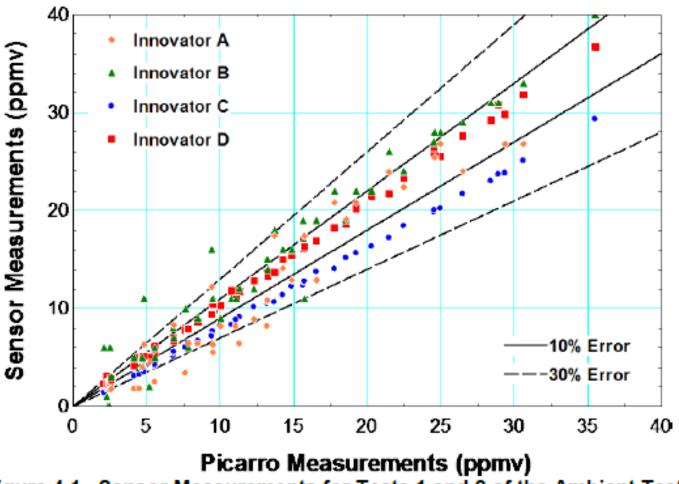


Figure 4.1. Sensor Measurements for Tests 1 and 2 of the Ambient Test.

Bringing innovation to life

U.S. methane policyWhat is coming?

National Action to Reduce Methane is Underway **White House** BLM **EPA** Set goal to reduce methane Will reduce methane waste Will set rules for new/ by 40-45% on public lands modified sources

International

How do we take on the challenge?

Top global methane emitters

Table 2: Top 30 emitting countries in 2012

Excluding major oil and gas producers for which no data is available

		100-year GWP		20-year GWP	
	MT	% global	% country	MT .	% country
	CO2e	o&g CH4	total GHG	CO2e	total GHG
Russia	387	23%	21%	1301	39%
US	192	11%	3.4%	647	8.7%
Uzbekistan	97	5.8%	42%	326	65%
Canada	54	3.2%	• 7.1%	180	17%
Mexico	43	2.6%	5.4%	146	11%
Azerbaijan	43	2.6%	53%	145	72%
EU	43	2.5%	1.0%	143	2.6%
Iran	43	2.5%	7.2%	143	18%
Venezuela	38	2.3%	16%	128	32%
Turkmenistan	37	2.2%	33%	126	47%
Algeria	30	1.8%	19%	99	38%
UAE	29	1.7%	10%	98	25%
Ukraine	29	1.7%	7.4%	96	17%
Nigeria	27	1.6%	8.1%	91	14%
India	25	1.5%	1.1%	85	2.3%

SOURCE: "Untapped Potential: Reducing Global Methane Emissions from Oil and Natural Gas Systems" (table excerpted in part)

Questions

