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Abstract
Underlying policy efforts to address global climate change is the scientific need to develop the
methods to accurately measure and model carbon stocks and fluxes across the wide range of spatial
and temporal scales in the Earth system. Initiated in 2010, the NASA Carbon Monitoring System is
one of the most ambitious relevant science initiatives to date, exploiting the satellite remote sensing
resources, computational capabilities, scientific knowledge, airborne science capabilities, and
end-to-end system expertise that are major strengths of the NASA Earth Science program. Here we
provide a synthesis of ‘Phase 2’ activities (2011–2019), encompassing 79 projects, 482 publications,
and 136 data products. Our synthesis addresses four key questions: What has been attempted?
What major results have been obtained? What major gaps and uncertainties remain? and What are
the recommended next steps? Through this review, we take stock of what has been accomplished
and identify future priorities toward meeting the nation’s needs for carbon monitoring reporting
and verification.

1. Introduction

Anthropogenic emissions of greenhouse gasses are
the highest in history, and changes in the Earth’s cli-
mate are having widespread impacts on both nat-
ural and human systems. In response, local, state,
national, and international policies are in discussion
and under development to reduce greenhouse gas
emissions in the future. Foundational to these efforts
is the scientific ability to accurately measure, and
model, carbon stocks and fluxes throughout the Earth
system and across a range spatial and temporal scales.

Initiated in 2010, a congressional appropriation
directed NASA to initiate work towards a carbon
monitoring system (CMS) and provided specific
guidance. The approach NASA developed in follow-
ing these directions emphasized exploitation of the
satellite remote sensing resources, scientific know-
ledge, and end-to-end system expertise that aremajor
strengths of the NASA Earth Science program. The
approach also took into account data and expert-
ise that are the domain of other U.S. Govern-
ment agencies and anticipates close communications
and/or partnerships with those agencies and their
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scientific and technical experts. Additionally, it laid
the groundwork for CMS-related applications of cur-
rent and future satellite sensors.

In Phase 1 (2010–2012), NASA’s CMS activities
were directed through NASA centers and involved
two pilot studies and two scoping efforts (Hurtt
et al 2014a). The Biomass Pilot focused on quan-
tifying the terrestrial vegetation aboveground car-
bon stock using consistent approaches and perform-
ing uncertainty analyses on its magnitude and spa-
tial distribution. The initial emphasis was on pro-
duction and evaluation of both local and U.S.-wide
biomass products. The Flux Pilot produced an integ-
rated emission/uptake product through a combin-
ation of space-based measurements of atmospheric
carbon dioxide, carbon cycle models and assimila-
tion systems, and information about the processes
that couple the surface to the atmosphere. Scop-
ing studies focused on quantifying carbon in the
oceans and the potential of NASA products to meet
policy and decision-making requirements. In addi-
tion,more than a dozen ScienceDefinition TeamPro-
jects were carried out. This work was synthesized in
the Phase 1 Report (Hurtt et al 2014a).

In Phase 2 (2011–2016), consistent with Con-
gressional direction, NASA took steps to ensure sub-
stantial external (i.e. non-government) participation
in CMS research by requiring individual projects to
have greater than 50% of their funding directed to
activities within external organizations. New pro-
jects were competitively selected to build upon initial
efforts, with a large expansion in prototyping activ-
ities across a diversity of systems, scales, and regions,
including research focused on prototype monitoring,
reporting, and verification (MRV) systems for spe-
cific carbon management projects. In 2013, studies
were added to advance MRV-relevant studies in sup-
port of reducing emissions from deforestation and
degradation (REDD) and REDD+ projects, and the
U.S. SilvaCarbon program, using commercial off-the-
shelf technologies. Selections in 2014 included stud-
ies to improve the CMS biomass and flux products
and to conduct new MRV-relevant projects at local
to regional scales, including several state-level bio-
mass mapping projects within the U.S. and pro-
jects to quantify carbon in coastal ecosystems rel-
evant to ‘blue carbon’ objectives of reducing car-
bon emissions by conserving and sustainably man-
aging a coastal carbon sink. In 2014, a congression-
ally mandated report documented NASA’s approach
to MRV (Hurtt et al 2014b). The report summar-
ized progress to date within the Caron Monitoring
System project and described NASA’s longer term
strategy for CMS and its vision regarding NASA’s role
in MRV. In 2015 and 2016, project selections contin-
ued to advance biomass mapping efforts, flux quan-
tification, and blue carbon mapping. Throughout,
work was conducted to improve the characterization

of errors and uncertainties in existing products and
to engage stakeholders, identify their needs, and seek
inputs on the value of CMS prototype products.

In all, during Phase 2NASA supported 79 projects
prototyping carbon monitoring activities around the
world, in every major component of the Earth sys-
tem, and linked to a diverse set of stakeholders and
applications across a variety of domains. The effort
represents one of the largest and most ambitious col-
lections of applied carbon monitoring research cre-
ated around the world. The goal of this paper is to
synthesize the results from all completed Phase 2 pro-
jects into summary findings relevant to the program
and the broader scientific community.

2. Methods

The scope of this report includes all CMS Phase 2
projects, publications, and archived data products as
of August 2021. This included all projects initiated
between 2011 and 2016 and completed as of this
report.

To conduct the synthesis, we reviewed the CMS
products hierarchically first within theme, then by
theme, and finally at the initiative level (figure 1).
More specifically, we collected a comprehensive set
of all projects and their resulting publications and
archived datasets and stakeholders (figure 2). To
organize the analysis, each project, publication, and
data product was assigned a primary theme based
on the science being completed. Primary themes
included: land biomass, atmospheric flux and meth-
ane, stakeholder, and oceans/wet carbon. For each
product, we also analyzed important metrics includ-
ing domain, resolution, citation, downloads, and
application readiness level (ARL).

ARL is an index adapted from the NASA tech-
nology readiness levels in order to track and guide
application efforts of NASA funded projects such
as those under the CMS program. The levels range
from 1–basic science to 9–in mature and in oper-
ational use. These levels are used as a communica-
tion tool to give a clear picture of the current and
projected ‘readiness’ of each CMS projects’ involve-
ment in decision-making and operational platforms.
Products are assigned ARLs by the principal investig-
ator annually and change as the products mature and
are used in different ways by stakeholders. We meas-
ure the change in product maturity by comparing the
ARL at the start of the project to those at the end.

A subset of experts was then assigned to each
of the primary themes to review the products in
that theme and developed detailed findings centered
around four key questions:

• What haveNASA-CMSprojects attempted in Phase
2?

• What major results and findings have been made?
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Figure 1. Conceptual diagram for synthesis of findings at multiple levels of organization. Results from publications can be
aggregated by theme, which in turn can be aggregated to the initiative level.

Figure 2. Summary of methods used to create CMS synthesis findings described in this paper.

• What major gaps and uncertainties remain?
• What are the recommended next steps?

The findings were then further aggregated to ini-
tiative level. Finally, feedback was sought from the
community during sessions at the CMS Science Team
Meeting inNovember 2019 and at the AGUFallMeet-
ing in December 2019.

3. Results

First, a series of quantitative summary metrics were
calculated to describe CMS projects, and products.
These metrics are presented below.

3.1. Summary metrics
In total, CMS Phase 2 consisted of 79 projects, and
resulted in 482 publications and 136 data products
(table 1). Biomass represented the largest theme, with
37 projects, 252 publications and 59 archived data
products. Atmosphere flux was second largest and

had 33 projects, with 164 publications and 60 data
products. Wet carbon/ocean had 7 projects, 63 pub-
lications and 17 data products. Stakeholder has 2 pro-
jects, 3 publications, and no data products.

Projects covered a wide range of geographic
domains (figure 3). There were 22 projects with a
global domain. Additional regional projects increased
the total number of projects unevenly in different
areas around the world. In Southeast Asia, Indonesia,
South Africa, and South America an additional 1–5
regional projects produced a total for those regions
of 23–27. The highest concentration of projects was
focused on North America with 29 total projects and
the U.S. with 39 total projects.

Archived data products provide a more detailed
measure of data availability around the world
(figure 4). Similar to the project level map, the data
product coverage is uneven around the world and
has the highest concentration over North Amer-
ica and the U.S. Additional product coverage over
S. Africa, China, and India were primarily more local

3
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Table 1. CMS Phase 2 projects, publications, and data products.

Theme Sub-theme
Number
of projects

Number of
publications

Number of
archived data
products

Biomass Land biomass 37 252 59
Atmosphere/Flux Global-surface atmosphere

flux
33 164 60

Land-atmosphere flux
Methane

Ocean Ocean biomass 7 63 17
Ocean-atmosphere flux
Land-ocean flux

Stakeholder Decision support 2 3 N/A
MRV

Total: 79 482 136

Figure 3. Number of CMS Phase 2 projects by geographic domain. There are 22 global projects and additional projects in various
countries.

in focus. Investigating these patterns further, there
were significant differences between Biomass and
Flux products in terms of coverage (tables S1–S3
(available online at stacks.iop.org/ERL/17/063010/
mmedia)). Flux products tended to represent a larger
domain, with 50% (30/60) providing global cover-
age and fewer at all smaller domains including 17%
(10/60) local. In contrast, Biomass products tended to
represent smaller areas, with 46% (27/59) local, and
only 8% (5/59) global. Likewise, ocean/wet carbon
products tended to be even more clustered in small
domains, with 88% (15/17) at local or subnational
scale, and 12% (2/17) global.

Spatial resolution varied by domain size and by
theme (figure 5, table S4). Flux products tended to
have relatively coarse resolution with 82% (49/60)
>1 km. Biomass products tended to have higher spa-
tial resolution with 83% (49/59)⩽1 km. As expected,
there was generally an inverse relationship between
domain size and spatial resolution consistent with
these differences, with local scale products (e.g. bio-
mass) tended to have higher spatial resolution, and
larger domain products (e.g. flux) tended to have
coarser resolution.

The temporal domain of products varied and
spanned a range of pre-1960 to post-2060 (figure 6).

4
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Figure 4. Number of CMS Phase 2 products (local and regional scale) by geographic domain and theme. ∗∗ Two projects with
geographic domains of Southern Africa, and India and China produced no products for those regions.

Figure 5. Spatial domain and resolution (m) of CMS Phase 2 products.

The majority of products were focused on the recent
past, with 82% (111/136) of CMS products covering
the period 2000–2020, 15% (21/136) extending pre-
2000, and 3% (4/136) of products extending post-
2020. Biomass had 75% (44/59) covering the period
2000–2020, 24% (14/59) products extending pre-
2000 and 2% (1/59) post-2020. Flux had 85% (51/60)
covering 2000–2020, 12% (7/60) products extending
pre-2000, and 3% (2/60) post-2020.

The distribution of ARL and ARL change was cal-
culated for Phase 2 products as a measure of applic-
ation readiness and change in application readiness
(figure 7, table S5). The distribution of ARL values
followed a modal distribution, with the most com-
mon ARL values in the intermediate range of 5–6
(51), and many fewer examples at beginning ARL
1–2 (11), or most mature status ARL 8–9 (15). All
products experienced maturation during the period

5
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Figure 6. NASA-CMS Phase 2 projects by time domain.

of development. The distribution of ARL change
(Final ARL–Initial ARL) followed a decreasing func-
tion, with the largest category of projects increasing 1
ARL value and steadily declining to those advancing
a full 8 ARL values over the project.

Stakeholders are defined as users actively engaged
in CMS science projects. There were 132 different
stakeholders working with CMS scientists in Phase
2 representing different types of organizations, sci-
ence themes, and nationalities (figure 8). CMS pro-
jects engaged stakeholders from a wide variety of
organizational types, with the most common types
being Federal Government (15%), Company (15%),
Non-Governmental Organization (15%), State Gov-
ernment (14%) and University (14%). Additional

stakeholders represented Local government (6%),
Research Institutes (6%), Intergovernmental Organ-
izations (3%), Media (2%), Museums (1%) and
Other (9%). Stakeholders also represented differ-
ent science themes, with Biomass accounting for
53%, and Flux 30%, and MRV 17%. Stakehold-
ers also represented different nationalities, with U.S.
73%, and followed by a variety of other countries
each⩽5%.

3.2. Thematic
Qualitative results were synthesized at the thematic
level. These results are presented below and in table
form in supplementary material (tables S6–S11).

6
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Figure 7. Product metrics. (A) ARL change, (B) ARL current, (C) downloads, (D) citations 2011–2018.

3.2.1. Biomass
Tracking plant biomass in terrestrial ecosystems is an
essential component of CMSs. Biomass has been a
focus of the NASA CMS since the program’s incep-
tion, and many CMS projects have advanced our
understanding ofmethods tomap, track changes over
time, characterize uncertainties in biomass estimates
and project future storage potential. In addition, from
these results CMS projects have been able to improve
our understanding of the controls on biomass accu-
mulation and loss in natural and managed systems.

Methodologically, CMS projects have shown that
biomass mapping is achievable at multiple scales,
and that such mapping is defensible in the context
of MRV and international carbon programs such as
REDD+. Mapping is possible through a combina-
tion of lidar, optical data, radar data, forest invent-
ory data, and emerging statistical and machine learn-
ingmethods (Junttila et al 2013, Tyukavina et al 2013,
Montesano et al 2013, Zhang et al 2014, Potapov et al
2014, Lagomasino et al 2015, Babcock et al 2015,
Duncanson et al 2015,Huang et al 2015, Gu et al 2016,
Babcock et al 2016, Swatantran et al 2016, Deo et al
2016, 2017, Huang et al 2017, Treuhaft et al 2017,

Fekety et al 2018, Babcock et al 2018, Thomas et al
2018, Rappaport et al 2018, Saarela et al 2018, Xu et al
2018, Kennedy et al 2018, Alonzo et al 2018, Huang
et al 2019, Simard et al 2019, Patterson et al 2019,
Bullock et al 2020, Arevelo et al 2020). In particular,
manyCMSprojects have advanced the statistical tools
needed tomake suchmapping defensible (Montesano
et al 2013, Finley et al 2013, 2014, Cooke et al 2016,
Datta et al 2016, Reimer et al 2016, Finley et al 2017,
Babcock et al 2018, Saarela et al 2018, Patterson et al
2019, Olofsson et al 2020). Importantly, these new
methods are also highly generalizable and can also
provide quantitative assessments of product uncer-
tainties. In addition, the work has been conducted
across a range of diverse ecosystems and are applic-
able to new space-borne lidar missions such as GEDI
(Healey et al 2012, Duncanson et al 2019, Patterson
et al 2019).

CMS studies have also contributed significantly
to our understanding of the patterns of biomass,
drivers of biomass change, and storage potential in
vegetation and the soil. For example, human-caused
forest disturbance (deforestation and degradation)
remains the key driver of biomass and carbon loss in

7



Environ. Res. Lett. 17 (2022) 063010 G C Hurtt et al

Tanzania, 2

Mozambique, 2

United States, 73

Canada, 1

Mexico, 5

Germany, 3

Norway, 1

United Kingdom, 4

Indonesia, 4

Colombia, 1

Zambia, 3 Ethiopia, 1

Country 

Museum, 1

Company, 15

Federal Government, 15

Inter-governmental

Organization, 3

Local Government, 6

Media, 2

NGO, 15

Other , 9

Research Institute, 6

State Government, 14

University, 14

Type

Global Surface-Atmosphere

Flux, 4

Land Biomass, 46

Land-Atmosphere Flux, 24

Land-Ocean Flux, 2

MRV, 17

Ocean Biomass, 7

Theme

Figure 8. CMS stakeholders by type, theme, an country.

temperate and tropical forest systems, with fire, cli-
mate, and longer-duration stressors (drought, insect
pests) playing an important role in some systems
(e.g. boreal, savanna, peatland) (French et al 2014,
Morton 2016, Longo et al 2016, Cohen et al 2016,

Baccini et al 2017, Noojipady et al 2017, Rappaport
et al 2018, Rangel Pinage et al 2019, Li et al 2020,
Tang et al 2020). There is evidence of recent dimin-
ishment of fire in regions of low- to intermediate-
forest cover, perhaps because of transitions in human

8
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Figure 9. Example framework for utilizing lidar and optical remote sensing data together with field data to map above ground
biomass, and model future carbon sequestration potential (Huang et al 2015, Huang et al 2017, Huang et al 2019, Hurtt et al 2019,
Tang et al 2021, Ma et al 2021a).

management associated with economic development
and increase in closed canopy forests (Andela et al
2017). In global drylands systems, there is a strong
link between precipitation and the rate and timing of
carbon uptake and storage, but which is also medi-
ated by plant adaptation strategies, including higher
than expected investment in leaf-level photosynthetic
machinery in global drylands ecosystems, with pos-
sibly important implications for response to climate
change (Biederman et al 2016, 2017, Hinojo-Hinojo
et al 2018). At the same time, increasing prevalence
of prolonged drought periods may significantly out-
weigh any mediation by plant adaptation strategies
leading to a chronic reduction in vegetation biomass
in dryland systems, including thewesternU.S. Studies
utilizing mechanistic ecosystem modeling have lever-
aged the high resolution lidar and optical data to
move beyond traditional MRV and map both cur-
rent stocks and future storage potentials for use in
planning scenarios (Hurtt et al 2019, Ma et al 2021a;
figure 9). Themost recent results from these products
are in active use in state-level carbon inventories and
climate mitigation planning.

Despite these advances, gaps remain. Major areas
of the world, including a diversity of different eco-
systems, disturbance regimes, land-use activities, etc
have yet to be mapped or modeled or validated at
high spatial resolution. Research has identified that a
key bottleneck and source of uncertainty in gridded

products is accurate quantification and application
of the allometric equations needed to create and
scale-up reliable biomass reference data (Xu et al
2018). Additionally, approaches to scale-up estab-
lishedmethods to continental and global domains are
needed. While the separate mapping of biomass and
biomass change from disturbance has been success-
ful, amore coordinated effort is needed to help recon-
cile issues related to biomass and disturbance loss and
recovery in space and/or time. The spatial resolution
and temporal mismatch in biomass and disturbance
mapping efforts complicates the fusion of these data-
sets to inform C management, including adequately
capturing uncertainties related to these isolated map-
ping efforts. In addition, a major challenge for the
mapping of biomass in some high-latitude or tropical
regions, is the general lack of suitable measurements
needed to train upscaling approaches. This includes
both the training data (e.g. measurements of plant
height, structure, biomass) themselves and also the
remote sensing observations needed for scaling and
creating the maps. Finally, despite better inclusion
of methodological uncertainties in estimation, it is
unclear how to advise practitioners when uncertain-
ties from different sources disagree.

From these findings, challenges, and knowledge
gaps, several important next steps emerge. Efforts
must continue to expand biomass mapping over
broad (continental to global) domains at a fine spatial

9



Environ. Res. Lett. 17 (2022) 063010 G C Hurtt et al

resolution (appropriate to capture variability in both
natural patterning and in human interventions that
drive change) and linked to models for attribution of
changes and future projections needed for planning.
Validation frameworks are needed to assess accuracy
at a variety of scales against high-quality reference
data (e.g. Menlove and Healey 2020). In addition,
clear protocols for the collection of measurements to
use with biomassmapping (including clearly defining
how to incorporate measurement uncertainties into
scaling efforts) need to be provided to influence how
large-scale measurements efforts (e.g. FIA) develop
the essential datasets used for biomass accounting.
While the goals for MRV are defensible, broad-scale
biomass estimates and novel approaches should con-
tinue to be explored to help understand the influence
of fine-scale variation on scaling efforts and how fine-
scale patterns influence larger scale, but more coarse
resolution, mapping efforts. These include the con-
tinued use of detailed in-situ measurements and val-
idation of allometry using lidar tools (e.g. Xu et al
2018), as well as the incorporation of other novel
platforms such as unoccupied aerial systems (Alonzo
et al 2020) to provide both fine-scale, targeted (e.g.
using UAS to fill in critical observation gaps) and
spatially-extensive information on plant structure
and biomass to inform scaling approaches or valid-
ate other products. Similarly, the temporal cadence
of biomass mapping should increase to improve our
understanding of biomass change, thus allowing bet-
ter attribution of changes to drivers. At the same time,
a tighter coupling of efforts between biomass and
disturbance mapping should be explored as this will
be essential for increasing the temporal frequency of
biomass estimates and also ensure landscape changes
are correctly accounted for. The incorporation of
more model-driven biomass upscaling should also
be considered, which would allow for the fusion of
observation data and process models to infer bio-
mass state based on measurements and mechanistic
modeling of plant growth (Fer et al 2018). In gen-
eral, these improved maps of change must continue
to be better integrated into process-basedmodels and
with tower-based flux observations. Throughout all
of these steps, clearer definitions of product uncer-
tainties are needed, particularly relative to the types
of factors included within uncertainty estimates for
different products.

3.2.2. Flux
Flux activities in CMS Phase 2 focused on develop-
ing new methods for estimating carbon fluxes, char-
acterizing key sources of uncertainty, and deploy-
ing new measurements to support flux evaluation.
CMS flux products represent both bottom-up (e.g.
process models, inventories combined with land sur-
face remote sensing data) and top-down (atmo-
spheric inversion) approaches. CMS investigators
have developed multiple observationally constrained

bottom-up estimates of the major flows of carbon
including fossil fuel (Asefi et al 2014, Gately and
Hutyra 2017, Oda et al 2018) and fire emissions
(Andela et al 2019) and land (Hardiman et al 2017,
Weir et al 2021a) and ocean (Brix et al 2015, Gregg
et al 2017, Carroll et al 2020) carbon flux. They have
also improved inverse methods that use atmospheric
observations to infer surface sources and sinks with
a focus on attributing net flux to underlying pro-
cesses at both regional (Fischer et al 2017, Graven
et al 2018, Hu et al 2019) and global (Liu et al
2017, Wang et al 2018) scales (figure 10). Phase
2 projects also improved characterization of major
sources of uncertainty including atmospheric trans-
port model errors (Brophy et al 2019, Diaz-Isaac et al
2019, Butler et al 2020) and deployed both ground-
based (Fischer et al 2017, Graven et al 2018) and air-
craft measurements (Wolfe et al 2018, Hannun et al
2020) to validate local to regional scale flux estimates.
CMS Phase 2 also included the first project designed
to evaluate the consistency and completeness of
CMS products for estimating global and regional
carbon budgets.

CMS projects yielded a diverse set of results
that represent an increased understanding of both
anthropogenic and natural flux processes. These find-
ings show that global inverse models that incor-
porate satellite CO2 observations are able to reduce
flux uncertainty and quantify the relative distribu-
tion of regional net fluxes (Liu et al 2014, Wang
et al 2020). When combined with other types of
observations (e.g. shorter-lived trace gasses, indic-
ators of vegetation productivity), such models can
provide additional information about specific flux
processes including respiration, gross primary pro-
duction, and fire emissions (e.g. Liu et al 2017,
Konings et al 2019,Magney et al 2019).Multiple stud-
ies focused on quantifying the impact of El Nino
events on atmospheric CO2 and on understanding
the regional mechanisms that control these changes
in the tropics (Bowman et al 2017, Chen et al 2017b,
Liu et al 2017) andmidlatitudes (Hu et al 2019). CMS
Phase 2 projects also demonstrated the ability to con-
strain and validate anthropogenic emissions estim-
ates on regional scales using a combination of in situ
measurements and remote sensing data (Chen et al
2016, Fischer et al 2017, Graven et al 2018, Sargent
et al 2018). During the COVID-19 pandemic, global
data assimilation systems were able to detect the small
decrease in global fossil fuel emissions and to evalu-
ate independent country-level estimates of emissions
changes (Weir et al 2021b). Bottom-up datasets also
yielded new insights into the key processes and trends
driving flux changes across land (Chen et al 2017a,
Andela et al 2019, Fu et al 2019, Bloom et al 2020)
and ocean ecosystems (Gregg et al 2017, Carroll et al
2020). This progress, particularly at global scales, sup-
ports the capacity building potential of CMS. Many
global flux products provide detailed information for
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Figure 10. Carbon cycle inversion models, which infer surface-atmosphere flux from atmospheric measurements, have been a
central component of CMS. Satellite observations of surface properties (e.g. ocean color, land surface reflectance, nighttime lights,
fire radiative power) are used as input to data-driven models that provide a prior estimate of flux. These fluxes are transported
through the atmosphere by chemistry and transport models. Atmospheric observations of CO2 and other species are ingested by
inverse models, which compute a posterior estimate of net flux. This suite of modeling tools can be used to attribute corrected
carbon flux to specific processes including both human emissions and terrestrial and ocean exchange.

non-Annex I countries that may improve national
level reporting mandated by the Paris climate accord.

In addition to demonstrating understanding of
processes, many CMS projects focused on high-
lighting the observational and modeling priorities
that are needed to further refine flux estimates.
The availability of high-resolution, low-latency global
flux and emissions datasets remains an unmet need
in the atmospheric carbon monitoring community
(Oda et al 2018, Weir et al 2021a). Though uncer-
tainty quantification (UQ) methods have improved
throughout CMS (e.g. Bousserez et al 2015, Oda
et al 2019), atmospheric transport remains a siz-
able source of uncertainty for inverse estimates at
both regional and global scales (Brophy et al 2019,
Diaz-Isaac et al 2019, Butler et al 2020). Many crit-
ical carbon cycle processes are poorly captured by
climate models (Andela et al 2019, Fu et al 2019) des-
pite research advances in recent years.

While Phase 2 CMS flux projects reflected pro-
gress in quantifying both human emissions and nat-
ural fluxes, many challenges remain. Large differences
in bottom-up flux estimates persist despite incor-
poration of satellite data in land and ocean mod-
els (Ott et al 2015). There is a lack of independ-
ent atmospheric data at appropriate spatio–temporal
scales for evaluating fluxes (Wolfe et al 2018), espe-
cially in the tropics. Though substantial improve-
ments have been made over the past decade, satel-
lite bias and coverage gaps limit both the accuracy
(Basu et al 2018) and spatial scale of top-down global
fluxes (Wang et al 2018). Regional top-down estim-
ates, which can help improve the spatial scale of
flux estimates in key regions like the United States
where denser observations are available, are com-
plicated by a lack of boundary condition informa-
tion. Uncertainty estimates, a required element for

all CMS products, are often difficult to interpret
because of differences in the quantification method
used by various projects. In addition to challenges
that influence product quality, flux projects have
also hadmore difficulty connecting with stakeholders
than some other areas within CMS. Relevant factors
include technical roadblocks like a lack of famili-
arity with scientific data formats among stakehold-
ers, incompatibility between geographical boundar-
ies and spatial resolution of models, and differences
in scientific and policy-relevant carbon account-
ing definitions. In addition, most CMS research
products have long latencies and irregular update
schedules, which also limits relevance to stakeholder
communities.

Progress made across individual CMS projects
provides the opportunity for substantial advances in
flux estimation in coming years. Quasi-operational
flux modeling systems are reducing latency in flux
estimates to support research and stakeholder com-
munities. Better integration of regional and global
modeling activities could help support more robust
and reliable flux estimates across scaleswith improved
characterization of uncertainties. Net flux estimates
may also be improved through incorporation of
observations from multiple satellites, allowing either
a longer period of record for better understanding of
interannual variability and trends (e.g. GOSAT and
OCO-2) and/or denser observations in key regions
(e.g. OCO-2 and GeoCarb). Integration of mul-
tiple types of observations that simultaneously con-
strain flux, stocks, and disturbance into dynamical
data assimilation systems can improve consistency
of flux products and improve their ability to yield
policy relevant information. New observations that
support evaluation of regional flux evaluation can
improve confidence in flux estimates. Cross-project
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coordination is also critical in addressing several
known gaps. Improving consistency in uncertainty
methods of bottom-up CMS flux datasets would
allow them to better inform top-down estimates and
to improve quantification of top-down uncertain-
ties. CMS also needs to work toward an integrated
approach for engaging potential flux stakeholders,
particularly at national and global scales where it is
important for NASA and other government agencies
to provide consistent, regularly updated, high-quality
flux information.

3.2.3. Methane
CMS methane activities in Phase 2 focused on
enabling the use of satellite observations of atmo-
spheric methane to quantify and attribute emis-
sions on local, regional, and global scales. The work
involved strong collaborations with climate policy
stakeholders including the California Air Resources
Board (CARB), the U.S. Environmental Protection
Agency (EPA), Environment and Climate Change
Canada, the Mexican National Institute of Ecology
and Climate Change, the Integrated Global Green-
houseGas Information System, and the RockyMoun-
tain Institute.

A major component of CMS methane activities
has been the exploitation of GOSAT satellite obser-
vations (2011–present) to quantify methane emis-
sions, the methane sink (mainly tropospheric OH),
and their trends on the global scale (Maasakkers et al
2019, Zhang et al 2021, Lu et al 2021). Other GOSAT
analyses have focused onNorth America (Turner et al
2015, 2016, Sheng et al 2018a, Maasakkers et al 2021),
and on tropical wetlands (Parker et al 2018). CMS
investigators have conducted atmospheric measure-
ment campaigns to quantify methane emissions
on urban to regional scales and support satellite
observations. This has involved evaluation of com-
mercial solar-viewing shortwave infrared (SWIR)
spectrometers with the TCCON satellite validation
standard (Hedelius et al 2016, 2017), and application
of these spectrometers to study emissions in Boston
(McKain et al 2015) and from dairies (Viatte et al
2017). It has also involved inversion of ground-based
network observations to quantify emissions in the Los
Angeles Basin (Yadav et al 2019), inversion of NASA
SEAC4RS aircraft observations to quantify emissions
in the Southeast U.S. (Sheng et al 2018b), and air-
craft campaigns using the AVIRIS-NG imaging spec-
trometer to map methane plumes from point sources
and infer emissions (Duren et al 2019, Thorpe et al
2020, Cusworth et al 2020a). Combined analysis of
satellite, aircraft, and surface observations over the
Los Angeles Basin demonstrated the power of the
integrated observing system (Cusworth et al 2020b),
as did the combined analysis of multiple satellite data
streams to quantify emissions from a gas well blowout
(Cusworth et al 2021a).

Inversions of satellite data to infer methane emis-
sions require high-quality, spatially resolved emission
inventories to serve as prior estimates. Developing
such inventories has been a priority for CMS and
has focused globally on wetlands (Tian et al 2015a,
Bloom et al 2017, Poulter et al 2017, Zhang et al
2017, Treat et al 2018), rice (Zhang et al 2016), live-
stock (Wolf et al 2017), and fossil fuels (Scarpelli
et al 2020a). It has also involved spatial disaggrega-
tion of national inventories for the U.S. (Maasakkers
et al 2016) and Mexico (Scarpelli et al 2020b). A
detailed map of methane-emitting infrastructure has
been developed for the Los Angeles Basin to guide
atmospheric measurements (Carranza et al 2018).

Another priority for CMS has been to enable
the next generation of satellite observations of meth-
ane. The new high-density TROPOMI satellite obser-
vations have been used to infer methane emissions
on the ∼10 km scale (Varon et al 2019, Zhang
et al 2020, Shen et al 2021). Studies have determ-
ined the combined value of thermal and shortwave
IR (TIR + SWIR) measurements to resolve lower-
tropospheric methane (Worden et al 2015) and infer
trends in tropospheric OH (Y Zhang et al 2018). CMS
has contributed to specifications for future geosta-
tionary instruments such as GeoCARB and GeoFTS
to constrain methane emissions from the regional
scale down to the scale of individual facilities (Cus-
worth et al 2018, Turner et al 2018, Sheng et al
2018b). CMS has been a mechanism for develop-
ing the power of GHGSat and imaging spectromet-
ers such as PRISMA and Sentinel-2 to observe point
sources of methane (Cusworth et al 2019, 2021a,
Varon et al 2018, 2019, 2020, 2021).

CMSmethane activities have yielded a number of
important results. They have established that inund-
ation and ecosystem respiration are major drivers
of variability and trends in methane emissions from
wetlands, as shown by GOSAT observations (Parker
et al 2018) and biogeochemical models (Bloom et al
2017, Poulter et al 2017, Zhang et al 2017). Wet-
land models with low methane to temperature sens-
itivity generally agree better with satellite observa-
tions (Ma et al 2021b). Through the development
of spatially-resolved national inventories and their
application to inversion of satellite observations, CMS
has shown that emissions from the oil sector are
underestimated by a factor of 2 in the national invent-
ories for the U.S. (Maasakkers et al 2021) and Mex-
ico (Shen et al 2021). On a point source level, CMS
investigators have achieved better understanding of
the role of ‘super-emitters’ in contributing dispro-
portionately to state and national methane emissions
(Duren et al 2019, Varon et al 2019, 2021, Cusworth
et al 2021b) and have identified the underlying pro-
cesses for landfills (Cusworth et al 2020a) and gas
storage facilities (Thorpe et al 2020). Results from
these point-source CMS studies were shared directly
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Figure 11. Attribution of the 2010–2018 trend in atmospheric methane by inversion of GOSAT satellite observations. The top
panel shows the growth rates of atmospheric methane for individual years as measured by the NOAA surface network and as
inferred from the inversion of GOSAT observations, indicating good agreement between the two and an acceleration of the
methane trend after 2013. The middle panel shows the attribution of the trend to different sources and to the methane sink (OH),
highlighting major contributions from anthropogenic sources and from wetlands. The bottom panels show the major
anthropogenic emissions and their trends by sectors, indicating a major contribution of livestock to the methane trend. Adapted
from Zhang et al (2021).

with industry and agency stakeholders who conduc-
ted follow-up site visits with surface sensors to verify
and further refine source attribution. In roughly 50%
of those cases, facility operators indicated that the
confirmed super-emitters were fixable and a subset of
those were repaired. The net magnitude of mitigated
methane emissions from those studies is currently
being reviewed.

Better understanding has also been achieved of
the drivers of globalmethane trends over the past dec-
ade, as illustrated by figure 11. Inversion of GOSAT
data suggests that tropical livestock could be a major
driver for the decadal trend, while wetlands may con-
tribute to the acceleration of the trend since 2016
(Zhang et al 2021). Changes in OH concentrations
could greatly contribute to the interannual variabil-
ity of methane (Turner et al 2017) though probably
not to the decadal trend (Zhang et al 2021).

Major gaps remain in our understanding ofmeth-
ane emissions. There is considerable uncertainty in
quantifying wetland emissions and how these emis-
sions contribute to the global methane trend. This
includes uncertainties in the carbon respiration rate
(Bloom et al 2017), inundation dynamics (Parker et al
2018), and contributions from the non-growing sea-
son (Treat et al 2018) Improved biogeochemicalmod-
els for methane emission from wetlands are needed
(Xu et al 2016). The factors contributing to the global
trend in atmospheric methane over the past decade
are also still open to debate.

The next several years offer considerable oppor-
tunity for improving our ability to use satellite data
for quantifyingmethane emissions on all scales (Jacob
et al 2016). Planet and Landsat products can enable
better understanding of land surface characteristics
to improve our ability to quantify wetland methane
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emissions. TROPOMI observations should be trans-
formative for improving the capability of inversions
of atmospheric methane to constrain the methane
budget on global to regional scales. GeoCARB geosta-
tionary observations over the Americas should enable
better quantification of emissions from South Amer-
ican wetlands. The emerging constellation of satellite
instruments able to quantify point sources (GHGSat,
PRISMA, S-2, EnMAP, EMIT, MethaneSat, Carbon
Mapper) opens up the possibility for operational leak
detection and sustained emissions quantification at
the scale of individual facilities. The ability to con-
strain global OH trends from satellite observations
of methane should improve through exploitation of
TROPOMI and CrIS data.

3.2.4. Marine, freshwater and wet carbon
CMS projects have contributed to various efforts to
better characterize the role of oceans and coastal
interfaces in global carbon cycling. Some of this
work has been summarized in the Second State of
the Carbon Cycle Report (USGCRP 2018) as well as
published papers on the North American coastal car-
bon cycle (Fennel et al 2019) and the carbon budget
of Eastern North America (Najjar et al 2018). Addi-
tionally, Benway et al (2016) produced a synthesis
of current information about coastal carbon budgets
and provided a series of recommendations for future
research.

Some CMS projects have considered the nature
of coastal margins as boundaries to the continental
carbon cycle. Related to this is improved observation
and modeling of lateral transport of terrestrial car-
bon and nutrients into the watershed and ultimately
to coasts (Liu et al 2013, Lohrenz et al 2013, Xue et al
2013, Tao et al 2014, Ren et al 2015, 2016, Tian et al
2015b, 2015c, 2020; figure 12). A key to understand-
ing this important term is how land use and land
cover along with other drivers such as human activ-
ity and climate-related changes affect lateral transport
processes.

Considerable focus was given to the poten-
tially large reservoirs of carbon biomass undergo-
ing substantial change in sensitive coastal ecosys-
tems. Both mangrove and tidal wetland ecosystems
are critical coastal buffer zones and are undergoing
rapid changes. CMS efforts include studies of man-
groves (Lee and Fatoyinbo 2015, Lagomasino et al
2015, 2016, Fatoyinbo et al 2018, Simard et al 2019)
and tidal wetlands (Hopkinson et al 2012,Morris et al
2016, Hinson et al 2017, Byrd et al 2018, Holmquist
et al 2018a, 2018b). Mangroves account for a sub-
stantial amount of carbon biomass and various CMS
efforts examined Lidar-based algorithms for refin-
ing abovegroundbiomass estimates (Lagomasino et al
2015, Fatoyinbo et al 2018, Simard et al 2019). Tidal
wetlands also represent an important coastal carbon
reservoir (Hopkinson et al 2012, Byrd et al 2018,
Windham-Myers et al 2018, Holmquist et al 2018a,

2018b). CMS projects have also evaluated sources of
methane and nitrous oxide emissions. This included
examination of tidal wetlands and aquaculture sites
(Poulter et al 2017, Zhang et al 2017, EPA 2019), as
well as more comprehensive assessments over North
America and globally (Xu et al 2012, Tian et al 2012b,
2015a, 2016).

CMS efforts have greatly expanded the inform-
ation about oceans and coastal interfaces and their
key role in global carbon cycling. Efforts such as the
Second State of the Carbon Cycle Report (USGCRP
2018, Fennel et al 2019) have provided an initial
assessment of air-sea and land-ocean fluxes for North
America. CMS investigators contributed to chapters
covering Inland Waters (Ch 14), Tidal Wetlands and
Estuaries (Ch 15), Coastal Ocean and Continental
Shelves (Ch 16), and Biogeochemical Effects of Rising
Atmospheric Carbon Dioxide (Ch 17). Coastal mar-
gins in North America act as a net sink of carbon. The
North American Exclusive Economic Zone is estim-
ated to be a net sink for carbon on the order of
160 ± 80 Tg C y−1 (Fennel et al 2019). The estim-
ated carbon input from land is 106 ± 30 Tg C y−1. A
global inventory of carbon dioxide fluxes in coastal
margins influenced by large rivers (Cai et al 2013)
found that estuaries were a net source of CO2 due
to metabolism of terrestrial carbon entering these
systems. In contrast, a global assessment of coastal
areas influenced by large river plumes found that
they were a net sink for CO2. Considerable focus
was given to the northern Gulf of Mexico and the
Mississippi River plume, including extensive ship-
based mapping and buoy measurements of pCO2

(Guo et al 2012, Cai et al 2013, Huang et al 2013,
2015a, 2015b) as well as model simulations using a
coupled physical-biogeochemical model (Xue et al
2014) and satellite-derived estimation of pCO2 and
air-sea flux of CO2 (Lohrenz et al 2018). The bio-
logical dynamics influencing carbon dynamics were
considered by Chakraborty et al (Chakraborty and
Lohrenz 2015, Chakraborty et al 2017), who explored
the relationships between phytoplankton community
composition and physiological properties of popula-
tions and relationships to environmental conditions.
Other efforts have examined carbon properties in
both the Gulf of Mexico and the Atlantic coast (Wang
et al 2013, Najjar et al 2018).

Impacts of human and climate-related forcing
on terrestrial watersheds affect export of carbon and
other materials to the coastal margins. Changes in
land cover and land use along with climate-related
factors were determined to impact lateral movement
of carbon and other materials through the watershed.
Work by Tian et al and others utilized the Dynamic
Land Ecosystem Model along with extensive satel-
lite and ground-based observations to examine his-
torical trends and patterns as well as modeled sim-
ulations of future scenarios under differing climate
and atmospheric carbon forcing (Tian et al 2012a,
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Figure 12. Century-long increasing trend and variability of dissolved organic carbon export from the Mississippi River basin
driven by natural and anthropogenic forcing as simulated by Dynamic Land Ecosystem Model (DLEM).

2015b, 2015c, Liu et al 2013, Lohrenz et al 2013,
Xue et al 2013, Tao et al 2014, Ren et al 2015, 2016,
Yu et al 2018). Urban land conversion (Zhang et al
2012, 2014), livestock manure nutrient production
(Yang et al 2016), crop production (Lu et al 2018),
forest disturbance (Chen et al 2013), drought (Chen
et al 2012), and large fires (Yang et al 2015) were
considered as significant factors in terrestrial carbon
dynamics. More recent work has addressed factors
affecting nitrogen loading to the Mississippi River
basin (Lu et al 2020, Tian et al 2020). An addi-
tional carbon-related concern for coastal ecosystems
is ocean acidification and its implications for coastal
ecology and carbon cycling. Increasing ocean acidi-
fication may also reduce the buffering capabilities of
coastal waters diminishing their capacity as carbon
sinks (Wang et al 2013, Salisbury et al 2015, Fennel
et al 2019).

Consideration by CMS projects was given to pro-
ductivity and influencing factors in the Upper Great
Lakes (Yousef et al 2014, Fahnenstiel et al 2016).
Information about primary productivity in the upper
Great Lakes was significantly expanded through CMS
efforts. Primary production in Lake Michigan was
found to decrease over the 1998–2010 period, largely
attributed to a decline in chlorophyll biomass as a res-
ult of the quagga mussel activity (Yousef et al 2014).

A comprehensive assessment of primary production
was done for the upper Great Lakes for the period
2010–2013 (Fahnenstiel et al 2016), thereby provid-
ing a baseline for future study.

Despite progress in understanding marine, fresh-
water and wet carbon dynamics, scientific uncer-
tainties and priorities remain. These include con-
tinued refinement of terrestrial ecosystem models
needed to reduce uncertainties in carbon flux quan-
tification. Improvements are needed in paramet-
erization in areas such as in-stream organic pro-
duction and transformation, as well as hydrolo-
gical processes including effects of dams and rivers
require further study. Constraining estimates of con-
tributions by coastal margins and inland waters
to continental and global carbon budgets requires
improved assessments of exchange fluxes and the
associated seasonal and interannual variability. While
the amount of information has grown substantially,
uncertainties represent a challenge because carbon
is exchanged across multiple interfaces (land-coastal
ocean, coastal ocean-open ocean, ocean-benthic,
ocean-atmosphere). There is a need for improved
characterization of spatial patterns and relationships
to forcing, as well as assessments of these exchange
fluxes and the associated seasonal and interannual
variability. How coastal margins will be affected by
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changing climate forcing, sea level rise, and human
impacts remains an important question. Tidal wet-
lands and mangroves represent large reservoirs of
carbon and are important as potential sources of car-
bon dioxide and other greenhouse gases. Contribu-
tions of coastal margins to methane budgets are still
poorly understood. Also, contributions of tidal wet-
lands and marshes to nitrous oxide budgets need to
be examined. Tidal wetlands and mangroves have
been identified as important sinks and sources, but
still associated with significant uncertainties. Contin-
ental to global assessments are needed, but current
knowledge is very limited regarding coastal margins
as sources of methane or nitrous oxide.

Although considerable progress has been made
in understanding contributions of coastal margins
to global carbon, these contributions are still not
well constrained, particularly with regard to seasonal
and spatial patterns. There is a need for coordinated
modeling and observations across the land-ocean
continuum, including continued and expanded time-
series observations to better discern temporal vari-
ability. Approaches should integrate observations,
modeling and stakeholder needs (Fennel et al 2019).
There is also a need for better quantification of
methane and nitrous oxide fluxes in different coastal
types (e.g. river, estuary, tidal wetland, mangrove,
etc). Continued advancement of novel approaches
such as remote sensing techniques for characteriz-
ing changes in carbon biomass and fluxes in coastal
environments will be important for reducing uncer-
tainty in these variables. Uncertainties in feedbacks
need also to be addressed—how will future changes
including climate, human impacts, and increasing
atmospheric CO2 affect efficiency of ocean uptake?
Improved understanding of how coastal margins and
associated carbon dynamics will change and what
factors, including human activity, will influence that
change will be important considerations for policy
and decision-making.

3.2.5. Stakeholder
During Phase 2, stakeholder engagement accelerated
at the federal, state, and local level, and with interna-
tional partners. The CMS program funds basic and
applied research that is created while engaging with a
user community in a way that bridges carbon science
and user communities to better serve societal needs
(Brown et al 2020; figure 13).

By connecting carbon cycle science research to
stakeholders who use the data in their decision mak-
ing, NASA CMS contributes to understanding and
meeting the needs of the climate data user com-
munity. For example, Phase 2 produced novel data
products on forest carbon product designed to meet
state needs beginning inMaryland (Huang et al 2015,
Hurtt et al 2019, Lamb et al 2021a), and later expand-
ing to the multi-state Regional Greenhouse Gas Ini-
tiative (RGGI) region (Tang et al 2021, Ma et al

2021a, Lamb et al 2021b). New efforts on mapping
and monitoring methane across California and other
regions (Carranza et al 2018) engaged the CARB to
identify and remove methane ‘hotspots’ across urban
areas. Other stakeholders across a wide variety of
CMS projects include Northwest Management Inc.
The Nature Conservancy, Worcester Tree Initiative,
Maryland Valleys Planning Council,World Resources
Institute, Blue Source, Chesapeake Conservancy, U.S.
Forest Service, the Environmental Defense Fund, the
Sonoma County Agricultural Preservation and Open
Space District, among many others.

Ensuring that critical information on carbon is
used in day-to-day decisions and policy making by
stakeholders such as governments, businesses, and
institutions requires early engagement and frequent
communication between the user and the producer
of the information (Cash et al 2006). The CMS pro-
gram allows scientists to build mature relationships
with stakeholders that result in greater success in
moving a carbon cycle product from conceptualiza-
tion to actual use within a decision-making context.
It is only through funding a single individual who
provides consistent engagement and builds relation-
ships among and between the scientists and these
institutions is CMS able to accelerate uptake of data-
sets in Phase 2 (Brown et al 2020).

Major gaps from Phase 2 include the need for
carbon products to be repeated, updated regularly,
and for CMS to provide information that describes
change through time instead of a single point in time.
Change products would require standardization and
repeat acquisition of input data, ongoing support
of computing resources, access services, and for the
policy relevance of the product to be clearly acknow-
ledged and articulated. Gaps also include a relative
lack of products that describe the sensitive ecosys-
tems of mangroves and urban forests, and products
that link biomass to methane emissions. Economic
studies are needed to demonstrate the value of these
ecosystems and how information on them can be
used in decision making in ways that may result in
improved resilience and functioning (Horita et al
2017). Economic analysis of the value of informa-
tionmay include data documenting impact of carbon
cycle uncertainty (Cooke et al 2016), and the costs
and benefits of forest policy that incorporates car-
bon sequestration. For example, Lamb et al (2021b)
describe how afforestation and reforestation inMary-
land can provide both carbon sequestration potential
and economic opportunity via forest carbon pricing
verified through the use of geospatial products gener-
ated through the CMS program.

Recommendations include increased focus on:
reconciling carbon stocks and fluxes, developing con-
sistency across scales, quantifying movement and
transport of carbon, attributing carbon emissions and
sinks to respective sources, cross-sectoral account-
ing, and UQ (West et al 2013). More data products
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Figure 13. CMS applications program framework for stakeholder engagement.

are needed in new regions and new ecosystems
with new stakeholders supporting city, state, and
national/international initiatives where demand for
decision support is increasing. Capacity to use car-
bon data products for people who are developing
policy is a critical need, as Lamb et al (2021a) demon-
strated.With an improved understanding of the value
of carbon and the alternative land uses, appropri-
ate incentives and policies can be developed that
increase the value of land use while sequesteringmore
carbon.

CMS has developed a community of prac-
tice where scientists have learned how to do

meaningful stakeholder engagement, the value of
this engagement, and have learned through annual
Science Team meetings and stakeholder workshops
about applications of CMS products (Brown et al
2020). This engagement by each funded project is
one of the most novel parts of the CMS program
and results in rapid prototyping and discovery of
new carbon cycle data and models. By emphasiz-
ing in future funding opportunities the need for
proposers to identify and engage with stakeholders
before proposing, more rapid uptake of new carbon
cycle products can be achieved (Brown et al 2020).
As Arnott et al (2020) points out, funders of science
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are receptive to new ways of revisiting the ‘social con-
tract’ for science so that co-production of knowledge
can be prioritized. Ensuring CMS scientists priorit-
ize relationships as well as producing products and
writing papers is essential.

3.3. Initiative
CMS Phase 2 has engaged a large and diverse set
of scientists and stakeholders in prototyping novel
approaches to carbon monitoring in all major com-
ponents of the Earth system (land, atmosphere,
ocean/wet carbon), for both biomass and fluxes, and
over a variety of spatial (local to global) and tem-
poral domains. The projects and their results have
been described in multiple publications and synthes-
ized at the thematic level above. Here they are aggreg-
ated up and synthesized at the initiative level toward
a systems perspective.

For biomass, it is clear CMS has demonstrated
through multiple efforts that high-resolution map-
ping and modeling of forest biomass enabled by LiD-
AR/Radar and optical remote sensing is now pos-
sible across a range of systems, at multiple scales and
ARLs, and is defensible in the context of MRV and
REDD +. The advances thus far based largely on air-
borne data have yielded important applications in
their own right and have also paved the way for sub-
sequent orbital missions such as GEDI and ICESat-2
and others. For flux, atmospheric research and inverse
modeling techniques have also qualitatively advanced
and led to important new capabilities and findings for
carbon. CMS has advanced two state of the art global
flux systems, able to track sources and sinks and 3-D
transport of carbon in the atmosphere. Importantly,
regional networks of in situ and remote-sensingmeas-
urements of greenhouse gas concentrations have been
shown capable of validating emission estimates. For
methane, satellite and aircraft observations have been
demonstrated to usefullymonitormethane emissions
from the national/regional scale down to the scale of
point sources. The resulting capabilities can be used
in national inventories, and in the identification of
superemitter point sources. For wet carbon, research
has quantified the importance of coastal margins as a
sink of carbon—with high temporal and spatial vari-
ability, and that the impacts of human and climate-
related forcing on terrestrial watersheds affect export
of carbon and other materials to the coastal margins,
and subsequently influence coastal carbon dynamics.
Wetland and mangrove ecosystems have been shown
to represent important reservoirs of carbon undergo-
ing rapid change and may also be important sources
of methane and other greenhouse gases. Across all of
these themes, and perhaps most importantly, CMS
has demonstrated that addressing stakeholder needs
and advancing science are mutually beneficial, with
societal needs driving new science requirements and
resulting in new scientific results of high societal
relevance.

Despite these advances, additional uncertainties
and challenges remain. For example, the mapping
of land biomass and biomass change, while prom-
ising, has yet to be accomplished with sufficient
accuracy and resolution or attribution across all eco-
systems, regions, disturbance regimes, and land-use
classifications and time domains to meet stakeholder
needs. Challenges remain to continue to improve
atmospheric flux products and their connection with
stakeholders. Net fluxes from atmospheric data do
not have clearly defined stakeholders. Long latency
and intermittent availability impacts relevancy for
stakeholders. Lack of independent data hampers
flux validation. Technical issues—data formats, geo-
graphic boundaries, accounting definitions can be
improved. Coastal margins are a substantial and
highly variable signal in global carbon budgets, but
this contribution is still not well constrained, par-
ticularly with regard to seasonal and spatial pat-
terns. Limitedwork on aquatic ecosystems and oceans
has been done to date. There is considerable uncer-
tainty in quantifying wetland emissions and how
they contribute to total national emissions and the
global methane trend. Uncertainties in carbon respir-
ation rate, inundation dynamics, non-growing sea-
son emissions all contribute. Different CMS studies
suggest that wetlands, livestock, oil/gas exploitation,
OH concentrations could all have contributed. Look-
ing across projects, it is not clear how different estim-
ates of uncertainty can be reconciled, or combined,
or applied, or how/how well various CMS products
could be combined into global system level assess-
ments, and once realized how such advances could
be maintained over time. There are many import-
ant advances still needed to realize the full poten-
tial including: advances in remote sensing and mod-
eling, coordinated advances in computing and data,
and new partnerships and stakeholders.

In the future, additional efforts are needed to pro-
totype carbon monitoring capabilities to meet stake-
holder needs across a full range of systems, scales,
quantities, and stakeholders. It is unreasonable to
assume that progress can be made evenly in all areas,
or that there is a single system that can meet all
of these needs. Future efforts should build on suc-
cesses, scale-up existing successful approaches, and
initiate new activities in areas and domains most
needed. Projects are needed that build upon airborne-
based prototypes and incorporate new orbital remote
sensing datasets to improve and extend coverage
of carbon monitoring capabilities, expand the cov-
erage of forest carbon monitoring and modeling
capabilities globally (GEDI, ICESat-2), and exploit
the next generation of satellite observations to con-
strain methane fluxes in a way that serves stake-
holder needs (GOSAT, TROPOMI, etc). The impact
on flux estimates from integration ofmultiple sensors
needs to be assessed (OCO-2, GeoCARB, etc). Pro-
jects should continue emphasis on validation and
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improve and coordinate quantitative estimates of
uncertainties to facilitate interoperability of products
and their applications. To connect system compon-
ents, integrated approaches for models and obser-
vations across scales, and across the land-ocean-
atmosphere continuum, are needed. For maximum
utility, an increased emphasis is needed on coup-
ling models and observations to expand the time
domain of products from contemporary periods,
both backward to reach policy base year, and for-
ward to include planning for climate mitigation.
To ensure maximum relevance, continued emphasis
on end-to-end stakeholder engagement, a hallmark
of CMS, should be continued and expanded, and
a plan must be developed to sustain key science
advances and update products of high stakeholder
importance.

4. Conclusion and discussion

Over the past 10 years (2011–2021), NASA Phase 2
has supported 79 projects to completion prototyping
innovative scientific approaches to carbon monitor-
ing on land, atmosphere, and ocean, including fluxes
between. The result is one of the largest collections
of applied carbon monitoring research to date, evid-
enced by numerous publications, citations, products,
and product downloads.

Key to this effort has been exploitation of the
remote sensing andmodeling expertise of NASA, col-
laboration with scientists and data products from
other agencies, and the end-to-end focus on stake-
holder engagement to meet societal needs. CMS pro-
jects have utilized both airborne and orbital remote
sensing products and have led the integration of these
data with some of the most advanced process models
for both biomass and atmospheric fluxes.

In addition to products and metrics, there
are numerous qualitative success stories that have
emerged. The 2014 Farm Bill directed the U.S Forest
Service (USFS) both to increase operational cooper-
ation with NASA and to address monitoring of large
areas of uninventoried forest in Interior Alaska. CMS
has partnered with USFS to advance the national
forest inventory in Alaska utilizing remote sensing
over some of the most inaccessible areas. Over Mary-
land, high resolution forest carbon monitoring and
modeling products have been implemented to meet
the state’s needs, becoming the first state in the nation
utilizing remote sensing-based assessment. Over wet-
lands, CMS products have pioneered mapping forest
biomass and providing a global assessment of their
carbon stocks in some of the most carbon rich eco-
systems in the world. Internationally, CMS innovated
a framework for forest MRV for other developing
countries. CMS has also had multiple success stories
in atmospheric flux. For example, carbon emissions
from Indonesian fires, of global importance, have
been quantified and used in official IPCC reporting.

Innovations quantifyingmethane flux have identified
important, but previously unknown, point sources
within the US, and lead to an update of U.S. reporting
of methane emissions nationwide. CMS also quanti-
fied land-ocean exchange of carbon in theMississippi
river basin, a key missing link in carbon account-
ing. Two global atmospheric flux systems provide
state-of-the-art synthesis and tracking of emissions
and fluxes worldwide.

Looking ahead, two key questions emerge. First,
how can past advances of societal importance be sus-
tained and updated and utilized? Tomeet these needs,
all NASA CMS products are permanently archived
and made freely available via Distributed Active
Archive Centers. Beyond that, additional efforts and
partnerships are needed to support capacity build-
ing to utilize new data products, and to refresh and
update important data products over time.

Next, what should be done tomeet evolving needs
for carbon monitoring? This report details a series
of remaining science gaps and science next steps in
both thematic areas and initiative wide. These recom-
mendations need to be married to the stakeholder
context, in which there is a growing need for car-
bon data at a variety of policy scales. Numerous cit-
ies have climate mitigation goals and carbon budgets,
evidenced by the Compact of Mayors. More than 25
states in the U.S. are members of the U.S. Climate
Alliance and have climate mitigation goals set in state
policy. Most recently, the U.S. has rejoined the Paris
Climate Accord and has made new commitments in
the Glasgow Pact. These different policy needs at dif-
ferent scales likely drive important differences in sci-
ence requirements. These needs must be met with
expanded and coordinated science advances designed
tomeet stakeholder needs in a flexible CMS, or system
of systems.

Despite NASA’s leadership in CMS, it is clear
that NASA does not and cannot do this work alone
(Hurtt et al 2014b). The vast majority of CMS pro-
jects involve critical interagency collaborations with
other federal agencies with complementary strengths,
including USDA, NOAA, DOE, and others. There is
tremendous opportunity now to strategically integ-
rate and deepen these interagency collaborations fur-
ther toward the development of the most robust CMS
capabilities to meet societal needs.
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