The potential for ¹⁴CO₂ measurements to constrain the North American fossil fuel CO₂ budget

Sourish Basu, John Miller, Scott Lehman

CMS telecon, August 26, 2015

Measurements of total CO₂ are generally ineffective at estimating fossil fuel CO₂ emissions

What is the issue?

NEE estimates

$(dC/dt = F_{oce} + F_{bio} + F_{fos})$

- All atmospheric CO₂ inversions assume CO₂(ff) "perfectly" known, solve for natural fluxes
- Global annual FF known to within 10%, not true at small scales
- Usually not up to date, EDGAR 6 yr old, Vulcan 14 yr old

What is the issue?

NEE estimates

$(dC/dt = F_{oce} + F_{bio} + F_{fos})$

- All atmospheric CO₂ inversions assume CO₂(ff) "perfectly" known, solve for natural fluxes
- Global annual FF known to within 10%, not true at small scales
- Usually not up to date, EDGAR 6 yr old, Vulcan 14 yr old

$$\begin{split} \delta^{14}\mathrm{CO}_2 &= \left[\frac{({}^{14}\mathrm{CO}_2/\mathrm{CO}_2)_{\mathsf{sample}}}{({}^{14}\mathrm{CO}_2/\mathrm{CO}_2)_{\mathsf{reference}}} - 1\right] \times 1000\% \\ &= \left[\frac{\mathsf{relative abundance in sample}}{"\mathsf{typical" relative abundance}} - 1\right] \times 1000\% \end{split}$$

•
$$({\rm ^{14}CO_2/CO_2})_{\rm reference} =$$
 1.176 \times 10⁻¹²

- Basis for radiocarbon dating; older the sample, lower the $\delta^{14}C$
- Emitting fossil fuel CO₂ "ages" the atmosphere

Tree ring $\Delta^{14}C$ by Stuiver & Quay, 1981

Long term trend of ¹⁴CO₂ in the Northern Hemisphere

Over ConUS, $\Delta^{14}CO_2$ signal dominated by fossil fuel

$$\frac{dC}{dt} = F_{oce} + F_{bio} + F_{fos}$$
$$\frac{d}{dt} (C \cdot \Delta_{atm}) = \Delta_{fos}F_{fos} + \Delta_{atm} (F_{oce} + F_{bio})$$
$$+ \Delta_{oce}F_{oce \to atm} + \Delta_{bio}F_{bio \to atm}$$
$$+ \alpha (F_{nuc} + F_{cosmo})$$

tracers transported fluxes estimated

Our OSSE setup

- Simulate pseudo-obs of CO₂ and Δ¹⁴CO₂ with "true" fluxes and an atmospheric transport model
- Assimilate those pseudo-obs in an atmospheric inversion
- Prior fossil fuel, oceanic and biospheric fluxes are different from and biased w.r.t. "true" fluxes (disequilibrium and pure isofluxes are same)
- Check performance of OSSE by
 - How well posterior fluxes match "true" fluxes
 - Posterior correlation between natural and fossil fuel CO₂ fluxes

OSSE to gauge potential of ¹⁴CO₂ measurements

- How accurately can a $\rm CO_2 + {}^{14}\rm CO_2$ inversion estimate fossil fuel fluxes
- with ¹⁴CO₂ measurements at the level of 2010 coverage?

OSSE to gauge potential of ¹⁴CO₂ measurements

- How accurately can a $\rm CO_2 + {}^{14}\rm CO_2$ inversion estimate fossil fuel fluxes
- with ¹⁴CO₂ measurements at the level of 2010 coverage?
- with \sim 5000 ¹⁴CO₂ measurements/year?

OSSE results 2: correlations

Correlation between fossil fuel and biogenic CO₂ fluxes from Jan 1, 2010 to Jan 1, 2011

OSSE results 2: correlations

Correlation between fossil fuel and biogenic CO₂ fluxes from Jan 1, 2010 to Jan 1, 2011

<u>____</u>

- ¹⁴CO₂ measurements provide a top-down constraint on fossil fuel CO₂ emission estimates
- All CO₂ inversions assume a "known" fossil fuel flux, which can be relaxed using measurements of ¹⁴CO₂
- ► With 5000 ¹⁴CO₂ obs/year, we could recover the monthly national total FF CO₂ to 5%, and also monthly regional FF CO₂ from high-emitting regions
- Even with 2010 coverage, we could recover the monthly national total FF CO₂ to 5% for most months